Inverse Problems in Neural Field Theory

نویسندگان

  • Roland Potthast
  • Peter beim Graben
چکیده

We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinitedimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network

In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...

متن کامل

Dimensional Reduction for the Inverse Problem of Neural Field Theory

Inverse problems in computational neuroscience comprise the determination of synaptic weight matrices or kernels for neural networks or neural fields respectively. Here, we reduce multi-dimensional inverse problems to inverse problems in lower dimensions which can be solved in an easier way or even explicitly through kernel construction. In particular, we discuss a range of embedding techniques...

متن کامل

An Analytical Solution for Inverse Determination of Residual Stress Field

An analytical solution is presented that reconstructs residual stress field from limited and incomplete data.  The inverse problem of reconstructing residual stresses is solved using an appropriate form of the airy stress function.  This function is chosen to satisfy the stress equilibrium equations together with the boundary conditions for a domain within a convex polygon.  The analytical solu...

متن کامل

Neural Network Based Solution to Inverse Problems

The weILposedr7ess of the problems is not always guaranteed in inverse problems, unlike the forward problems. Dnts, a number of methods for giving wellposedrjess hm?e been studied in mathematical fields. In the ,field qf neural! networks, the network inversion method. for solving inverse problems was proposed; it is useflll but does not dissolute the ill-posedness of inverse problems. To overco...

متن کامل

Inverse problems in dynamic cognitive modeling.

Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Seco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2009